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A multilayered particle is illuminated by plane acoustic or electromagnetic waves
of one or several frequencies. We consider the inverse scattering problem for the
identification of the layers and of the refraction coefficients of the scatterer in a
non-Born region of scattering. Local deterministic and global probabilistic mini-
mization methods are studied. A special reduction procedure is introduced to re-
duce the dimensionality of the minimization space. Deep’s and the multilevel
single-linkage methods for global minimization are used for the solution of the in-
verse problem. Their performance is analyzed for various multilayer configurations.
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1. INTRODUCTION

Many practical problems require identification of the internal structure of an object given
some measurements of its surface. In this paper we study such identification for a multi-
layered particle illuminated by acoustic or electromagnetic plane waves. Thus, the problem
discussed here is an inverse scattering problem. A similar problem for the particle identifica-
tion from the light scattering data is studied in [29]. The precise formulation of the problem
is postponed until Section 2. Our approach is to reduce the inverse problem to the best fit
to data multidimensional minimization. This is done in Section 3. It is also shown there
that more than one frequency of the incoming waves is required to provide a stable identi-
fication. The resulting minimization is a challenging problem, since the objective function
has many narrow local minima. Finding a global minimum (the sought identification) is the
main subject of the study here. In Section 4 we analyze various local minimization methods
and develop a special local minimization method. This method, together with a specially
designed reduction procedure, is capable of finding this type of local minima. In Section 5
Kan and Timmer’s multilevel single-linkage method for global minimization is presented.
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Its pairing with the local minimization method of Section 4, finally, gives the tool for the
successful scatterer’s identification. A detailed numerical evidence of the performance of
this method is presented in Section 6.

2. DIRECT PROBLEM

Let D ⊂ R2 be the circle of a radiusR> 0,

Dm = {x ∈ R2 : rm−1 < |x| < rm, m= 1, 2, . . . , N} (2.1)

andSm = {x ∈ R2 : |x| = rm} for 0= r0 < r1 < · · · < r N < R. Suppose that a multilay-
ered scatterer inD has a constant refractive indexnm in the regionDm,m= 1, 2, . . . , N.
If the scatterer is illuminated by a plane harmonic wave, then, after the time dependency is
eliminated, the total fieldu(x) = ui (x)+ us(x) satisfies the Helmholtz equation

1u+ k2
0u = 0, |x| > r N, (2.2)

whereui (x) = eik0x·α is the incident field andα is the unit vector in the direction of prop-
agation. The scattered fieldus is required to satisfy the Sommerfeld radiation condition at
infinity; see [8].

Let k2
m = k2

0nm. We consider the following transmission problem,

1um + k2
mum = 0, x ∈ Dm, (2.3)

under the assumption that the fieldsum and their normal derivatives are continuous across
the boundariesSm,m= 1, 2, . . . , N.

In fact, the choice of the boundary conditions on the boundariesSm depends on the
physical model under consideration. The above model may or may not be adequate for an
electromagnetic or acoustic scattering, since the model may require additional parameters
(such as the mass density and the compressibility) to be accounted for. However, since
the goal of this paper is to study algorithms capable of resolving the inverse scattering
problem, we will accept the above simplified problem here. For more details on transmission
problems, including the questions on the existence and the uniqueness of the solutions, see
[1, 13, 27].

The inverse problem to be solved is:

IPS. Givenu(x) for all x ∈ S= {x : |x| = R) at a fixedk0 > 0, find the numberN of
the layers, the location of the layers, and their refractive indicesnm,m= 1, 2, . . . , N in
(2.3).

Here IPS stands for a single-frequency inverse problem. Numerical experience shows that
there are some practical difficulties in the successful resolution of the IPS even when no noise
is present. While there are some results on the uniqueness for the IPS (see [1]), assuming
that the refractive indices are known, and only the layers are to be identified, no stability
estimates are available. The identification is successful, however, if the scatterer is subjected
to a probe with plane waves of several frequencies. Thus, we state the multifrequency inverse
problem:

IPM. Givenup(x) for all x ∈ S= {x : |x| = R) at a finite numberP of wave numbers
k(p)0 > 0, find the numberN of the layers, the location of the layers, and their refractive
indicesnm,m= 1, 2, . . . , N in (2.3).
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3. BEST FIT PROFILES

If the refractive indicesnm are sufficiently close to 1, then we say that the scattering is
weak. In this case the scattering is adequately described by the Born approximation, and
there are methods for the solution of the above inverse problems. See [8, 9, 23, 24] for
further details. However, with such as assumption is inappropriate, the preferred method
is to match the given observations to a set of solutions for the direct problem. Since our
interest is in the solution of the IPS and IPM in the non-Born region of scattering, we choose
to follow the best fit to data approach. This approach is used widely in a variety of applied
problems; see, e.g., [4].

Note that, by the assumption, the scatterer has the rotational symmetry. Thus, we only
need to know the data for one direction of the incident plane wave. For this reason we fix
α = 0 in (2.2) and assume that the (complex) data functions

g(p)(θ), p = 1, 2, . . . , P (3.1)

are given for 0≤ θ < 2π , corresponding to the observations measured on the surfaceSof
the ballD for a finite set of free space wavenumbersk(p)0 .

Fix a positive integerM . Given a configuration,

Q = (r1, r2, . . . , r M , n1, n2, . . . ,nM), (3.2)

we solve the direct problem (2.2)–(2.3) (for each free space wavenumberk(p)0 ) with the lay-
ersDm = {x ∈ R2 : rm−1 < |x| < rm, m= 1, 2, . . . ,M}, and the corresponding refractive
indicesnm, wherer0 = 0. Let

w(p)(θ) = u(p)(x)|x∈S. (3.3)

Fix a set of angles2 = (θ1, θ2, . . . , θL) and let

‖w‖2 =
(

L∑
l=1

w2(θl )

)1/2

. (3.4)

Define

8(r1, r2, . . . , r M , n1, n2, . . . ,nM) = 1

P

P∑
p=1

∥∥w(p) − g(p)
∥∥2

2∥∥g(p)
∥∥2

2

, (3.5)

where the same set2 is used forg(p) as forw(p).
We solve the IPM by minimizing the above best fit to data functional8over an appropriate

set of admissible parametersAadm⊂ R2M .
It is reasonable to assume that the underlying physical problem gives some estimate for

the boundsnlow andnhigh of the refractive indicesnm as well as for the boundM of the
expected number of layersN. Thus,

Aadm⊂ {(r1, r2, . . . , r M , n1, n2, . . . ,nM) : 0≤ ri ≤ R, nlow ≤ nm ≤ nhigh}. (3.6)
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Note that the admissible configurations must also satisfy

r1 ≤ r2 ≤ r3 ≤ · · · ≤ r M . (3.7)

As already mentioned in Section 2, the numerical evidence shows that IPS is, practically,
unresolvable. Here is an example to illustrate the situation. Let the configurationQ1 be
(0.4, 0.6, 0.49, 9.0) withN = 2 andR= 1.0. Thus,Q1 corresponds to the two-layer cylinder

n(x) =


0.49 0≤ x < 0.4
9.0 0.4≤ |x| < 0.6
1.0 0.6≤ |x| ≤ 1.0.

Let Q2 = (0.3794, 0.5662, 0.6377, 0.040, 8.282, 5.969)with N = 3 andR= 1.0; thus,
Q2 corresponds to the three-layer cylinder

n(x) =


0.040 0≤ |x| < 0.3794
8.282 0.3794≤ |x| < 0.5662
5.969 0.5662≤ |x| < 0.6377
1.0 0.6377≤ |x| ≤ 1.0.

Let the datag(θ) be collected for just one wavenumberk0 = 3.0. Figures 1 and 2 show
the real and imaginary parts of the solutions for these two configurations. The solutions
are practically indistinguishable, especially if noise is present. LettingQ1 be the original
configuration for which the datag(θ) is observed, the value of8 at the configurationQ2 is
just 0.00012. Thus, there is no way (by any method) to determine the original configuration
Q1 of the scatterer. Clearly, there are many more configurations that would produce practi-
cally identical observations. Even if it could be proven that, theoretically, there is a unique

FIG. 1. Real part of the solutions for configurationsQ1 (solid line) andQ2 on the circleSfor k0 = 3,8(Q2) =
0.00012.
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FIG. 2. Imaginary part of the solutions for configurationsQ1 (solid line) andQ2 on the circleS for k0 =
3,8(Q2) = 0.00012.

solution for this IPS, it would be useless in practice, because of this and other practically
undistinguishable configurations.

On the other hand, the situation is quite different if we allow the scatterer to be probed
with waves of multiple frequencies.

Figures 3 and 4 show the real and imaginary parts for the same configurationsQ1 andQ2

when the free space wavenumberk0 is equal to 10.0. Then8(Q2) = 1.4307. It is, of course,

FIG. 3. Real part of the solutions for configurationsQ1 (solid line) andQ2 on the circleSfor k0 = 10,8(Q2) =
1.4307.
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FIG. 4. Imaginary part of the solutions for configurationsQ1 (solid line) andQ2 on the circleS for k0 =
10,8(Q2) = 1.4307.

possible that there are configurations undistinguishable at this frequency, but combining the
output for several frequencies, we can hope to achieve a reasonable recovery of the original
scatterer. We show in the subsequent sections, that it is, indeed, the case. While there
are many theoretical questions concerning the best or a reasonable choice of frequencies,
uniqueness for the IPM, stability estimates, etc., this work indicates the practicality of the
multifrequency approach.

To illustrate this point further, letP be the set of three free space wavenumbersk(p)0

chosen to be

P = {3.0, 6.5, 10.0}. (3.8)

Figure 5 shows the profile of the functional8 as a function of the variabler, 0.1≤ r ≤
0.6, in the configurationsqr with

n(x) =


0.49 0≤ |x| < r
9.0 r ≤ |x| < 0.6
1.0 0.6≤ |x| ≤ 1.0.

The best fit to data functional exhibits a sharp minimum atr = 0.4; thus, there is hope
to identify the sought configuration.

4. LOCAL MINIMIZATION METHODS

Using the best fit to data functional8 defined in (3.5), the IPM is reduced to a restrained
minimization over the admissible setAadm, defined in (3.6) and (3.7). It is well-known that
a multidimensional minimization is an extremely difficult problem, unless the objective
function is “well behaved.” The most important quality of such a cooperative function is
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FIG. 5. Best fit profile for the configurationsqr ; multiple frequenciesP = {3.0, 6.5, 10.0}.

the presence of just a few local minima. Unfortunately, this is, decidedly, not the case in
many applied problems and, in particular, for the problem under the consideration.

Figure 5 shows that our objective function8 has many local minima even along this
arbitrarily chosen one-dimensional cross-section of the admissible set. There are sharp
peaks and large gradients. Consequently, the gradient-based methods (see [7, 11, 14, 17,
19, 22]) would not be successful for a significant portion of this region. It is also appropriate
to notice that the dependency of8 on its arguments is highly nonlinear. Thus, the gradient
computations must be done numerically, which makes them computationally expensive.
More importantly, the gradient-based minimization methods (as expected) perform poorly
for these problems. These complications are avoided by considering conjugate gradient-
type algorithms which do not require the knowledge of the derivatives at all. One such
method is the Powell’s method.

For anN-dimensional space the method can be described as follows (see [7]).

Powell’s Method

1. Initialize the set of directionsui to the basis vectors

ui = ei , i = 1, 2, . . . , N.

2. Save the starting position asQ0.
3. Fori = 1, . . . , N moveQi−1 to be minimum along the directionui and call this point

Qi .
4. Fori = 1, . . . , N, setui = ui−1.
5. SetuN = PN − P0.
6. Move PN to the minimum along directionuN and call this pointP0.

It can be shown that an iteration of this procedure produces a setui of mutually conjugate
directions, provided, as usual, that the objective function is quadratic. It also implies a
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quadratic convergence for nearly quadratic functions. The main difficulty here is that the
obtained set of conjugate directions tends to become “folded up,” that is, linearaly dependent.
However, as noted in [7], the set of directionsui can be reset to the basis vectorsei after
everyN or N + 1 iterations of the basic procedure.

As explained in the next section, we leave the global exploration of the admissible set
to global minimization methods. A local minimization is used to explore an immediate
vicinity of the initial configurationQ ∈ R2M . With this goal in mind, given a configuration
Q ∈ R2M and a directionu in R2M we seek a minimum of8 along this direction (by a
bisection or a Golden Rule method) by restricting the probed points (at every minimization
step) to the admissible set and by keeping them within a certain distance from the initial
minimization point. This distancedmin is determined a priori to be a percentage of the
characteristic length ofAadm.

More precisely, the “turtle” one-dimensional minimization is done as follows.

One-Dimensional Minimization

1. Let the starting position beQ0.
2. Move fromQ0 along the given directionu by the distancedmin to obtainQ1 ∈ Aadm.
3. Find the minimum of8 on the interval [Q0, Q1].

If the minimum is attained inside the interval, then stop.
If the minimum is attained atQ0, then reverse the direction.
If the minimum is attained atQ1, then renameQ0 = Q1, and repeat the procedure.

We have used Brent’s minimization method [7] for the one-dimensional minimization
in the step 3. This way the local minimum clesest (the resolution is set up bydmin) to the
starting configurationQ0 is determined. The choice ofdmin must be balanced between the
desire to explore the fine structure of the objective function and the computational costs.

Now we can describe our basic local minimization method inR2M . The above “turtle”
one-dimensional minimization procedure is used in all the minimization steps below.

Basic Local Minimization Method

1. Initialize the set of directionsui to the basis vectors

ui = ei , i = 1, 2, . . . ,2M.

2. Save the starting position asQ0.
3. Fori = 1, . . . ,2M move fromQ0 along the directionui to find the point of minimum

Qt
i .
4. Reindex the directionui , so that (for the new indices)8(Qt

1) ≤ 8(Qt
2) ≤ , . . . ,

8(Qt
2M) ≤ 8(Q0).

5. For i = 1, . . . ,2M more Qi−1 to the minimum along the directionui and call this
point Qi .

6. Setv = Q2M − Q0.
7. MoveQ2M to the minimum along directionv and call this pointQ0.
8. Repeat the above steps until a stopping criterion is satisfied.

Note that we use the temporary points of minimaQt
i only to rearrange the initial

directionsui in a different order. This method falls within the category of the Powell
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minimization methods and, as mentioned above, produces conjugate directions and a
quadratic convergence for nearly quadratic functions.

Still another refinement of the above algorithm has turned out to be necessary to produce
a successful minimization. Since the dimension 2M of the minimization space was chosen
a priori to be larger than 2N, whereN is the (unknown) number of layers in the original
scatterer, we expect that the sought point of minimum will be located in a lower-dimensional
subspace of the minimization spaceR2M . This information available from the specific
structure of our minimization problem appears to be nontrivial. Suffice it to say, that all
of our numerical experiments described in Section 6 have failed without the following
(space dimension) “reduction” procedure. The main idea behind it is to conduct the local
minimization searches in as low-dimensional subspaces as possible. It is specific to the
inverse scattering problem for multilayer scatterer.

If two adjacent layers have close refraction coefficients in the sense that the objective
functional8 is not changed much when the two layers are assigned the same refraction
coefficient, then these two layers can be replaced with just one occupying their place. The
minimization problem becomes constrained to a lower-dimensional subspace ofR2M and
the local minimization is done in this subspace. A similar procedure was used by us in [15]
for the search of small subsurface objects.

Reduction Procedure

Let εr be a positive number.

1. Save the starting configurationQ0 = (r1, r2, . . . , r M , n1, n2, . . . ,nM ) and8(Q0). Let
the (M + 1)st layer beDM+1 = {r M ≤ |x| ≤ R} andnM+1 = k2

0.
2. For i = 2, . . . ,M + 1 replaceni−1 in the layerDi−1 by ni . Compute8 at the new

configurationQd
i , and the differencecd

i = |8(Q0)−8(Qd
i )|.

3. For i = 1, . . . ,M replaceni+1 in the layerDi+1 by ni . Compute8 at the new con-
figurationQu

i , and the differencecu
i = |8(Q0)−8(Qu

i )|.
4. Find the smallest among the numberscd

i andcu
i . If this number is less thanεr8(Q0),

adjust the refraction coefficient toni in the “down” or “up” layer accordingly. Replace the
two adjacent layers with one occupying their place, and renumber the layers.

5. Repeat the above steps until no further reduction in the number of layers is
occurring.

Note that an application of the reduction procedure may or may not result in the actual
reduction of layers.

Finally, the entire local minimization method (LMM) consists of the following:

Local Minimization Method (LMM)

1. Let the starting configuration beQ0 = (r1, r2, . . . , r M , n1, n2, . . . ,nM).
2. Apply the reduction procedure toQ0, and obtain a reduced configurationQr

0 contain-
ing Mr layers.

3. Apply the basic minimization method inAadm∩ R2Mr

with the starting pointQr
0, and

obtain a configurationQ1.
4. Apply the reduction procedure toQ1, and obtain a final reduced configuration

Qr
1.
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5. GLOBAL MINIMIZATION METHODS

Given an initial configurationQ0 a local minimization method finds a local minimum
nearQ0. On the other hand, global minimization methods explore the entire admissible
set to find a global minimum of the objective function. While the local minimization is
usually deterministic, the majority of the global methods are probabilistic in their nature.
There are great interest and activity in the development of efficient global minimization
methods; see. e.g. [4, 6]. Among them are the simulated annealing method ([20, 21]),
various genetic algorithms [16], interval method, and the TRUST method ([2, 3]). As we
have already mentioned, the best fit to data functional8 has many narrow local minima. In
this situation it is exceedingly unlikely to get the minima points by chance alone. Thus, our
special interest is in the minimization methods, which combine a global search with a local
minimization. In [15] we developed such a method (the hybrid stochastic-deterministic
method) and applied it to the identification of small subsurface particles, provided a set
of surface measurements. The HSD method could be classified as a variation of a genetic
algorithm with a local search with reduction. In this paper we consider the performance of
two algorithms: Deep’s method and Kan and Timmer’s multilevel single-linkage method.
Both combine a global and a local search to determine a global minimum. Recently, these
methods have been applied to a similar problem of the identification of particles from
their light scattering characteristics in [29]. Unlike [29], our experience shows that Deep’s
method has failed consistently for the type of problems we are considering. See [10, 29]
for more details on Deep’s method.

Multilevel Single-Linkage Method (MSLM)

Kan and Timmer [25, 26] give a detailed description of this algorithm. Zakovicet al.
in [29] describe in detail an experience of its application to an inverse light scattering
problem. They also discuss different stopping criteria for the MSLM. Thus, we give here
only a shortened and an informal description of this method and of its algorithm.

In a purerandom searchmethod a batchH of L trial points is generated inAadm

using a uniformly distributed random variable. Then a local search is started from each
of theseL points. A local minimum with the smallest value of8 is declared to be the
global one.

A refinement of the random search is thereduced sample random searchmethod. Here
we use only a certain fixed fractionγ <1 of the original batch ofL points to proceed with
the local searches. This reduced sampleHred of γ L points is chosen to contain the points
with the smallestγ L values of8 among the original batch. The local searches are started
from the points in this reduced sample.

Since the local searches dominate the computational costs, we would like to initiate them
only when it is truly necessary. Given a critical distanced we define a cluster to be a group
of points located within the distanced of each other. Intuitively, a local search started from
the points within a cluster should result in the same local minimum, and, therefore, should
be initiated only once in each cluster.

Having tried all the points in the reduced sample we have information on the number of
local searches performed and the number of local minima found. This information and the
critical distanced can be used to determine a statistical level of confidence that all the local
minima have been found. The algorithm is terminated (a stopping criterion is satisfied) if
an a priori level of confidence is reached.
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If, however, the stopping criterion is not satisfied, we perform another iteration of the
MSLM by generating another batch ofL trial points. Then it is combined with the previously
generated batches to obtain an enlarged batchH j of j L points (at iterationj ), which leads
to a reduced sampleH j

red of γ j L points. The critical distanced is reduced todj (thus, the
cluster’s size is redefined), a local minimization is attempted once within each cluster, the
information on the number of local minimizations performed and the local minima found
is used to determine if the algorithm should be terminated, etc.

The following is an adaptation of the MSLM method to the inverse scattering problem
presented in Sections 2 and 3, with all the relevant notations. The LMM local minimization
method introduced in the previous section is used here to perform local searches.

MSLM (at Iteration j)

1. Generate another batch ofL trial points (configurations) from a random uniform
distribution inAadm. Combine it with the previously generated batches to obtain an enlarged
batchH j of j L points.

2. ReduceH j to the reduced sampleH j
red of γ j L points, by selecting the points with the

smallestγ j L values of8 in H j .
3. Calculate the critical distancedj by

dr
j = π−1/2

(
0

(
1+ M

2

)
RM σ ln j L

j L

)1/M

,

dm
j = π−1/2

(
0

(
1+ M

2

)
(nhigh− nlow)

M σ ln j L

j L

)1/M

.

dj =
√(

dr
j

)2+ (dn
j

)2

4. Order the sample points inH j
red so that8(Qi ) ≤ 8(Qi+1), i = 1, 2, . . . , γ j L . For

each value ofi , start the local minimization fromQi , unless there exists an indexk < i ,
such that‖Qk − Qi ‖ ≤ dj . Ascertain if the result is a known local minimum.

5. Let K be the number of local minimizations performed, and letW be the number of
different local minima found. Let

Wtot = W(K − 1)

K −W − 2
.

The algorithm is terminated it

Wtot < W + 0.5. (5.1)

Here0 is the gamma function, andσ is a fixed constant.
A related algorithm (the mode analysis) is based on a subdivision of the admisible set

into smaller volumes associated with local minima. This algorithm is also discussed in
[25, 26]. From the numerical studies presented there, the authors deduce their preference
for the MSLM.
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6. NUMERICAL RESULTS

Introducing polar coordinates in (2.3) and separating the variables, equations for the total
field u(x) become

u1(x) =
∞∑

l=−∞
a1,l Jl (k1|x|)eil θ

for x ∈ D1,

um(x) =
∞∑

l=−∞
(am,l Jl (km|x|)+ bm,l Yl (km|x|))eil θ

for x ∈ Dl , l = 2, . . . , N, and

u(x) = eik〈x,ν〉 +
∞∑

l=−∞
Al H

(1)
l (k0|x|)eil θ

for x ∈ D : r N ≤ |x| ≤ R. HereJl ,Yl are the Bessel functions of the first and second kind,
H (1)

l is the Hankel function of the first kind, andν is the direction vector of the incident
wave. Since

eik〈x,ν〉 +
∞∑

l=−∞
i l Jl (k0|x|)eil θ

for ν = (1, 0), the above equations and the conditions of continuity form a system of
equations from which the fieldu(x) can be calculated on the circleS. This solves the direct
problem (2.2)–(2.3). Other methods of solution for such problems are known as well; see,
e.g., [18, 28]. Solving the direct problem for the setP of three free wave numbersk(p)0 (see
(3.8)), we obtain the total fieldsu(p)(x). Their restrictions toS give the (simulated) data
g(p)(θ).

Our approach to the inverse problem IPM (see Section 2) is to recast it in the best fit to
data form (3.5) and to minimize the objective functional8 overAadm. We have tested Deep’s
global minimization method, the multilevel single-linkage method, and a reduced sample
random search method. Each method was tried for three different original configurations
Q0 described below. The datag(p)(θ) was computed at 120 anglesθl = 2π l/120, l =
1, 2, . . . , 120, and8 was evaluated according to (3.4) and (3.5). This data was used with
three different noise levelsδ = 0.00, 0.03, and 0.10. More precisely, for the uniformly
distributed on [0, 1] random variablez

gδ(θ) = g(θ)+ δ‖g‖(2z− 1)(1+ i )

for the noise levelδ.
Since our goal was to test the applicable algorithms, the values for the refraction coeffi-

cients, the size, the wavenumbers, etc., were chosen arbitrarily at this time, that is, without
a regard for their possible physical relevancy. The original configurations are:
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Configuration Q(1)0 . This is a one-layer cylinderQ(1)
0 = (0.72, 4.2025) withN = 1 and

R= 1.0; see (3.2). That is, the refraction coefficient is defined by

n(x) =
{

4.2025 0≤ |x| < 0.72
1.0 0.72≤ |x| ≤ 1.0.

Configuration Q(2)0 . This is a two-layer cylinderQ(2)
0 = (0.4, 0.6, 0.49, 9.0) withN = 2

andR= 1.0; that is,

n(x) =


4.49 0≤ |x| < 0.4
9.0 0.4≤ |x| < 0.6
1.0 0.6≤ |x| ≤ 1.0.

Configuration Q(3)0 . This is a three-layer cylinderQ(3)
0 = (0.3, 0.7, 0.8, 4.0, 25.0, 9.0)

with N = 3 andR= 1.0; that is,

n(x) =


4.0 0≤ |x| < 0.3
25.0 0.3≤ |x| < 0.7
9.0 0.7≤ |x| < 0.8
1.0 0.8≤ |x| ≤ 1.0.

To identify these configurations we applied the global minimization methods of
Section 5. In each one we letM = 4, R= 1.0. A priori bounds for the refraction co-
efficients were chosen to benlow = 0.04 andnhigh = 30.25. Minor modifications to the
description of the methods in Section 5 were introduced for the purpose of computational
simplification. In particular, the minimization was done in

√
nm rather than innm as stated

there. This results in a rescaling of the admissible set. In each case, after a global minimum
Qmin was determined, the error of the identification

εerr =
∫

D|nmin(x)− n(x)|∫
Dn(x)

, (6.1)

wheren(x) is the refraction coefficient of the original configurationQ0, was computed to
determine if the identification was successful. We distinguished between the two levels of
a successful identification:εerr < 0.01 andεerr < 0.1.

Identification by Deep’s Method [10, 29]

Each test of the method consisted of 100 independent runs. SinceM = 4 the minimization
was done inR8. As we have already mentioned, the method failed every time. It seems
that the local minimization phase of Deep’s method (minimization over randomly selected
parabolas) is not extensive enough to identify narrow local minima present in this problem.
Also, the method does not use the reduction procedure (see Section 4), which, we think, is
another reason for its failure. As in [29] we have also observed the cycling of the algorithm.

Identification by Reduced Sample Random Search Method

This method is presented in Section 5 in the subsection on the multilevel single-linkage
method. The local minimization method with the reduction procedure (as described in
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TABLE I

Identification by MSLM

Success ratea

Noise Runs 0.01 0.1 Smallest8

δ = 0.00 10 8 10 0.0000
δ = 0.03 10 9 10 0.0016
δ = 0.10 10 10 10 0.0178

Note.Original ConfigurationQ(1)
0 .

a Identification is successful ifεerr < 0.01 , orεerr < 0.1 correspondingly; see (6.1).

Section 4) was used in the local minimization phase. Chosen parametersL = 15000 and
γ = 0.01 the performance of this method are the same, as those in the multilevel single-
linkage method. In fact,L = 15000 is exactly the sample size in MSLM at it termination
in our experiments. Since MSLM has the great advantage of a self-contained statistical
stopping criteria (and from which the number 15,000 was determined in the first place), it
is clearly a preferred method.

Identification by Multilevel Single-Linkage Method

We have attempted to identify all 3 original configurations,Q(1)
0 , Q(2)

0 , andQ(3)
0 , each

with no noise in the data (δ = 0.00) as well as with noise levelsδ = 0.03 andδ = 0.10. See
Tables I–III. Each of the 9 tests consisted of 10 independent runs. It took about 60 to 80 min
on average to complete one run on a 333-MHz PC. We usedM = 4, R= 1.0, γ = 0.01,
and the sample sizeL = 200. The parameterσ was chosen to be equal to 1.0. Valueσ = 4.0
was used in [26], andσ = 1.9 in [12]. As in Deep’s method above, a priori bounds for the
refraction coefficients were chosen to benlow = .04 andnhigh = 30.25. The valueεr = 0.1
was used in the reduction procedure (see Section 4) during the local minimization phase.

As in other work on the clustering algorithm, we have found the stopping rule (5.1) to be
unsatisfactory. In our experience the differenceWtot−W, while slightly decreasing with
the number of performed minimizations, has quickly stabilized around the value of 5. Thus,
the stopping criterion (5.1)

Wtot < W + 0.5

TABLE II

Identification by MSLM

Success ratea

Noise Runs 0.01 0.1 Smallest8

δ = 0.00 10 10 10 0.0000
δ = 0.03 10 1 10 0.0034
δ = 0.10 10 2 9 0.0362

Note.Original ConfigurationQ(2)
0 .

a See Table I.
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TABLE III

Identification by MSLM

Success ratea

Noise Runs 0.01 0.2 Smallest8

δ = 0.00 10 2 7 0.0000
δ = 0.03 10 0 5 0.0071
δ = 0.10 10 0 5 0.0541

Note.Original ConfigurationQ(3)
0 .

a See Table I.

could not be attained. This issue has been discussed in Refs. [5, 12], where a different
stopping rule was suggested for functions with large numbers of local minima. Since the
Bayesian stopping rule reflects the level of confidence in finding all the local minima, a
relaxation of (5.1) would mean a lower level of confidence, which still may be acceptable
to ensure that the global minimum is found among already performed local minimizations.
We have chosen to replace (5.1) with

Wtot < W + 0.5 or Wtot < (1+ εtot)W, (6.2)

whereεtot = 0.03.
As before

Wtot = W(K − 1)

K −W − 2
,

whereK is the number of local minimizations performed, andW is the number of different
local minima found. Thus, the MSLM algorithm is terminated if (6.2) is satisfied. In our
numerical experiments we have obtained the average valuesK = 5000, W = 150, and
Wtot = 155.

An example of successful(εerr < 0.1) identification forQ(2)
0 andδ = 0.10 is shown in

Fig. 6. The identified configuration is a two-layer cylinder

Qid = (0.3966, 0.5943, 0.4684, 9.203),

with 8(Qid) = 0.0367,εerr = 0.0480. That is,

n(x) =


0.4684 0≤ |x| < 0.3966

9.203 0.3966≤ |x| < 0.5943

1.0 0.5943≤ |x| ≤ 1.0.

An example of a successful(εerr < 0.1) identification forQ(3)
0 andδ = 0.03 is a three-

layer cylinder,

Qid = (0.3030, 0.7067, 0.8079, 4.071, 24.528, 8.857),
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FIG. 6. Refraction coefficientsn(x) for the originalQ(2)
0 and the identifiedQid (solid line) configurations.

Data noise levelδ = 0.10,8(Qid) = 0.0367, εerr = 0.0480.

with 8(Qid) = 0.00708, εerr = 0.4125. That is,

n(x) =


4.071 0≤ |x| < 0.3030

24.528 0.3030≤ |x| < 0.7067

8.857 0.7067≤ |x| < 0.8079

1.0 0.8079≤ |x| ≤ 1.0.

7. CONCLUSIONS

The inverse scattering problem IPM is the identification of a multilayered scatterer by a set
of observations on its boundary. Such problems have applications in science and engineering.
In the case of the week scattering approximation, many such problems can be solved by
a linearized inversion. However, if the scattering is not weak, other methods of solution
need to be developed. We have illustrated in Section 3 that an inversion based on just one
frequency of the incident waves cannot be successful, since there are distinct configurations,
producing practically the same observations. Introducing multiple frequencies, however,
makes the inverse problem more amenable to a solution.

In this paper the inverse problem is transformed into the best fit to data minimization
problem. This minimization is difficult, since the objective function is rugged and has many
narrow local minima. A promising way to treat such a minimization is by a combination
of global (probabilistic) and local (deterministic) minimization methods. In this paper we
examined various local and global methods. Concerning the local minimization methods it
was shown that the local minimization method (LMM) of Section 4 was successful, even
when other considered methods failed. This method is a variation of a conjugate directions
method with no use of partial derivatives. It has a quadratic convergence near quadratically
shaped minima. However, even this method needs to be enhanced by a reduction procedure
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(Section 4). This procedure helps the minimization to take an advantage of the a priori avail-
able information that the sought minima are likely to be found in certain lower-dimensional
subspaces of the entire minimization space.

For the global minimization part we considered Deep’s method and the multilevel single-
linkage method. While Deep’s method failed, the MSLM was successful in many instances.
It also has an important advantage of having termination criteria establishing a level of
confidence that the found minima contain the sought global minimum. Among the defi-
ciencies of the MSLM are its slow execution and inconsistency and failure to identify some
configurations. There is still a problem in choosing an appropriate stopping rule. Thus, the
MSLM provides a benchmark against which the performance other methods can be judged
and measured.
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