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A multilayered particle is illuminated by plane acoustic or electromagnetic waves
of one or several frequencies. We consider the inverse scattering problem for the
identification of the layers and of the refraction coefficients of the scatterer in a
non-Born region of scattering. Local deterministic and global probabilistic mini-
mization methods are studied. A special reduction procedure is introduced to re-
duce the dimensionality of the minimization space. Deep’'s and the multilevel
single-linkage methods for global minimization are used for the solution of the in-
verse problem. Their performance is analyzed for various multilayer configurations.
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1. INTRODUCTION

Many practical problems require identification of the internal structure of an object giv
some measurements of its surface. In this paper we study such identification for a m
layered particle illuminated by acoustic or electromagnetic plane waves. Thus, the prob
discussed here is an inverse scattering problem. A similar problem for the patrticle identif
tion from the light scattering data is studied in [29]. The precise formulation of the proble
is postponed until Section 2. Our approach is to reduce the inverse problem to the be!
to data multidimensional minimization. This is done in Section 3. It is also shown the
that more than one frequency of the incoming waves is required to provide a stable ide
fication. The resulting minimization is a challenging problem, since the objective functi
has many narrow local minima. Finding a global minimum (the sought identification) is t
main subject of the study here. In Section 4 we analyze various local minimization meth
and develop a special local minimization method. This method, together with a speci
designed reduction procedure, is capable of finding this type of local minima. In Sectio
Kan and Timmer’s multilevel single-linkage method for global minimization is presente
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Its pairing with the local minimization method of Section 4, finally, gives the tool for th
successful scatterer’s identification. A detailed numerical evidence of the performance
this method is presented in Section 6.

2. DIRECT PROBLEM
Let D c R? be the circle of a radiuR > 0,
Dn={XeR?:rm1<|X|<fm, m=12...,N} (2.1)

andSp,={x e R?: x| =rm} forO=rg <ry < --- <rn < R. Suppose that a multilay-
ered scatterer ilD has a constant refractive inday, in the regionD,, m=1,2,..., N.

If the scatterer is illuminated by a plane harmonic wave, then, after the time dependenc
eliminated, the total fieldi(X) = u; (X) + us(x) satisfies the Helmholtz equation

AU+Ku=0, [X|>ry, (2.2)

whereu; (x) = €k is the incident field and is the unit vector in the direction of prop-
agation. The scattered field is required to satisfy the Sommerfeld radiation condition a
infinity; see [8].

Letk? = k3nm. We consider the following transmission problem,

AUm+K3upn =0, X € Dp, (2.3)

under the assumption that the fieldls and their normal derivatives are continuous acros:
the boundarie§,, m=1,2,..., N.

In fact, the choice of the boundary conditions on the boundagieslepends on the
physical model under consideration. The above model may or may not be adequate fc
electromagnetic or acoustic scattering, since the model may require additional parame
(such as the mass density and the compressibility) to be accounted for. However, s
the goal of this paper is to study algorithms capable of resolving the inverse scattel
problem, we will accept the above simplified problem here. For more details on transmiss
problems, including the questions on the existence and the uniqueness of the solutions
[1, 13, 27].

The inverse problem to be solved is:

IPS. Givenu(x) forallx e S= {x: |X| = R) at a fixedky > 0, find the numbeN of
the layers, the location of the layers, and their refractive indiggsn=1,2,..., N in
(2.3).

Here IPS stands for a single-frequency inverse problem. Numerical experience shows
there are some practical difficulties in the successful resolution of the IPS evenwhennon
is present. While there are some results on the uniqueness for the IPS (see [1]), assu
that the refractive indices are known, and only the layers are to be identified, no stabi
estimates are available. The identification is successful, however, if the scatterer is subje
to a probe with plane waves of several frequencies. Thus, we state the multifrequency inv
problem:

IPM. GivenuP(x) forallx € S= {x: |X| = R) at a finite numbeP of wave humbers
kép) > 0, find the numbeN of the layers, the location of the layers, and their refractive
indicesnn,, m=1,2, ..., Nin (2.3).
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3. BEST FIT PROFILES

If the refractive indices, are sufficiently close to 1, then we say that the scattering |
weak. In this case the scattering is adequately described by the Born approximation,
there are methods for the solution of the above inverse problems. See [8, 9, 23, 24]
further details. However, with such as assumption is inappropriate, the preferred met
is to match the given observations to a set of solutions for the direct problem. Since
interestis in the solution of the IPS and IPM in the non-Born region of scattering, we cho
to follow the best fit to data approach. This approach is used widely in a variety of appl
problems; see, e.g., [4].

Note that, by the assumption, the scatterer has the rotational symmetry. Thus, we
need to know the data for one direction of the incident plane wave. For this reason we
a = 0in (2.2) and assume that the (complex) data functions

gP@®), p=12....P (3.1)
are given for 0< 6 < 2w, corresponding to the observations measured on the susfate

the ballD for a finite set of free space wavenumbkefd.
Fix a positive integeM. Given a configuration,

Q=(rl’rzv"'1rM7n17n29-"7nM)7 (32)
we solve the direct problem (2.2)—(2.3) (for each free space Wavenuﬁ%)awith the lay-

ersDnh, =({x € R?:rmq < IX| <rm,m=212 ..., M}, and the corresponding refractive
indicesny,, whererg = 0. Let

w® (@) = uP (X)|xes. (3.3)

Fix a set of angle® = (61, 6-, ...,0,) and let

L 1/2
lwilz = (Z w2<9.>> : (3.4)
1=1

Define

P lw® — g®?
CI)(r:I-’"27"'9"M’nl,nz,...,nM):i w

=1 -]

: (3.5)

where the same sét is used forg‘® as forw®.

We solve the IPM by minimizing the above bestfitto data functidnaler an appropriate
set of admissible parametefgym c R?M.

It is reasonable to assume that the underlying physical problem gives some estimat
the boundshg, andnngh of the refractive indicesi, as well as for the boun of the
expected number of layefs. Thus,

Aadm C {(r1,r2, ..., rm, N1, N2, ..., NM) :0 <1y < R, Nigw < N < Npigh}.  (3.6)
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Note that the admissible configurations must also satisfy
M <rnp<r3<-:---<rIwy. (37)

As already mentioned in Section 2, the numerical evidence shows that IPS is, practic:
unresolvable. Here is an example to illustrate the situation. Let the configutidre
(0.4,0.6,0.49,9.0) withN = 2andR = 1.0. Thus,Q; corresponds to the two-layer cylinder

049 0<x<04
nx)=<¢90 04<|x| <06
10 06<|x] <10

Let Q2 = (0.3794 0.5662 0.6377, 0.040 8.282 5.969 with N = 3 andR = 1.0; thus,
Q2 corresponds to the three-layer cylinder

0.040 0< |x| <0.3794
8.282 Q3794< |x| < 0.5662
5.969 05662< |x| < 0.6377
1.0 0.6377< |x| < 1.0.

n(x) =

Let the datag(6) be collected for just one wavenumber= 3.0. Figures 1 and 2 show
the real and imaginary parts of the solutions for these two configurations. The solutic
are practically indistinguishable, especially if noise is present. Leindpe the original
configuration for which the da(®) is observed, the value df at the configuratio is
just 0.00012. Thus, there is no way (by any method) to determine the original configurat
Q; of the scatterer. Clearly, there are many more configurations that would produce pre
cally identical observations. Even if it could be proven that, theoretically, there is a unig

1.5 1
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FIG.1. Realpartofthe solutions for configuratio®s (solid line) andQ, on the circleSfork, = 3, ®(Q,)
0.00012.
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FIG. 2. Imaginary part of the solutions for configuratio@g (solid line) andQ, on the circleS for ky, =
3, ©(Qz) = 0.00012.

solution for this IPS, it would be useless in practice, because of this and other practic
undistinguishable configurations.

On the other hand, the situation is quite different if we allow the scatterer to be prok
with waves of multiple frequencies.

Figures 3 and 4 show the real and imaginary parts for the same configur@tiams Q,
when the free space wavenumkgis equal to 10.0. Thef# (Q,) = 1.4307. Itis, of course,
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FIG.3. Realpartofthe solutions for configuratioQs (solid line) andQ, on the circleSfork, = 10, ®(Q,) =
1.4307.
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FIG. 4. Imaginary part of the solutions for configuratios (solid line) andQ, on the circleS for ky =
10, d(Q,) = 1.4307.

possible that there are configurations undistinguishable at this frequency, but combining
output for several frequencies, we can hope to achieve a reasonable recovery of the ori
scatterer. We show in the subsequent sections, that it is, indeed, the case. While t
are many theoretical questions concerning the best or a reasonable choice of frequer
uniqueness for the IPM, stability estimates, etc., this work indicates the practicality of 1
multifrequency approach.
To illustrate this point further, leP be the set of three free space wavenumﬂxé?)s

chosen to be

P = (3.0, 6.5, 10.0}. (3.8)

Figure 5 shows the profile of the functiorilas a function of the variable 0.1 <r <
0.6, in the configurationg, with

049 O<|x|<r
nx)=4¢90 r=<|x] <06
10 06<|x/ <10

The best fit to data functional exhibits a sharp minimum at 0.4; thus, there is hope
to identify the sought configuration.

4. LOCAL MINIMIZATION METHODS

Using the best fit to data function@l defined in (3.5), the IPM is reduced to a restrainec
minimization over the admissible sAtqn, defined in (3.6) and (3.7). It is well-known that
a multidimensional minimization is an extremely difficult problem, unless the objecti
function is “well behaved.” The most important quality of such a cooperative function
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FIG. 5. Bestfit profile for the configuratiorgs ; multiple frequencie®® = {3.0, 6.5, 10.0}.

the presence of just a few local minima. Unfortunately, this is, decidedly, not the case
many applied problems and, in particular, for the problem under the consideration.

Figure 5 shows that our objective functidnhas many local minima even along this
arbitrarily chosen one-dimensional cross-section of the admissible set. There are s
peaks and large gradients. Consequently, the gradient-based methods (see [7, 11, 1
19, 22]) would not be successful for a significant portion of this region. It is also appropri
to notice that the dependency ®fon its arguments is highly nonlinear. Thus, the gradien
computations must be done numerically, which makes them computationally expens
More importantly, the gradient-based minimization methods (as expected) perform poc
for these problems. These complications are avoided by considering conjugate gradi
type algorithms which do not require the knowledge of the derivatives at all. One st
method is the Powell’s method.

For anN-dimensional space the method can be described as follows (see [7]).

Powell’'s Method

1. Initialize the set of directions; to the basis vectors
u=¢g, i=12...,N.

2. Save the starting position &%.
3. Fori =1,..., N moveQ;j_; to be minimum along the directian and call this point

4, Fori =1,..., N, setu; = uj_1.
5. Setuy = Py — Po.
6. Move Py to the minimum along directiony and call this point.

It can be shown that an iteration of this procedure producesig esémutually conjugate
directions, provided, as usual, that the objective function is quadratic. It also implie:
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guadratic convergence for nearly quadratic functions. The main difficulty here is that 1
obtained set of conjugate directions tends to become “folded up,” that s, linearaly depend
However, as noted in [7], the set of directiamscan be reset to the basis vecterafter
everyN or N + 1 iterations of the basic procedure.

As explained in the next section, we leave the global exploration of the admissible
to global minimization methods. A local minimization is used to explore an immedia
vicinity of the initial configurationQ € R?™. With this goal in mind, given a configuration
Q € R?M and a directioru in R?M we seek a minimum of along this direction (by a
bisection or a Golden Rule method) by restricting the probed points (at every minimizati
step) to the admissible set and by keeping them within a certain distance from the ini
minimization point. This distancdni, is determined a priori to be a percentage of the
characteristic length of\agm

More precisely, the “turtle” one-dimensional minimization is done as follows.

One-Dimensional Minimization

1. Let the starting position b@,.
2. Move fromQq along the given direction by the distancel,i, to obtainQ; € Aagm
3. Find the minimum ofb on the interval Qg, Q1].

If the minimum is attained inside the interval, then stop.

If the minimum is attained ay, then reverse the direction.

If the minimum is attained a4, then renam&), = Q1, and repeat the procedure.

We have used Brent's minimization method [7] for the one-dimensional minimizatic
in the step 3. This way the local minimum clesest (the resolution is set ui;pyto the
starting configuratior)g is determined. The choice df,i, must be balanced between the
desire to explore the fine structure of the objective function and the computational cost

Now we can describe our basic local minimization metho&#. The above “turtle”
one-dimensional minimization procedure is used in all the minimization steps below.

Basic Local Minimization Method

1. Initialize the set of directions; to the basis vectors
u=eg, i=12...,2M.

2. Save the starting position .

3. Fori =1, ..., 2M move fromQg along the direction; to find the point of minimum
Q.

4. Reindex the directiom;, so that (for the new indicesp(Q}) < ®(Qb) <, ...,
®(Qhy) < @(Qo).

5. Fori =1,...,2M more Q;_; to the minimum along the directiom and call this
point Q;.

6. Setv = Qom — Qo.

7. Move Qy to the minimum along direction and call this poiniQo.

8. Repeat the above steps until a stopping criterion is satisfied.

Note that we use the temporary points of minir@ only to rearrange the initial
directionsu; in a different order. This method falls within the category of the Powel
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minimization methods and, as mentioned above, produces conjugate directions at
quadratic convergence for nearly quadratic functions.

Still another refinement of the above algorithm has turned out to be necessary to proc
a successful minimization. Since the dimensidh 8f the minimization space was chosen
a priori to be larger thani®, whereN is the (unknown) number of layers in the original
scatterer, we expect that the sought point of minimum will be located in a lower-dimensio
subspace of the minimization spaB&M. This information available from the specific
structure of our minimization problem appears to be nontrivial. Suffice it to say, that
of our numerical experiments described in Section 6 have failed without the followil
(space dimension) “reduction” procedure. The main idea behind it is to conduct the o
minimization searches in as low-dimensional subspaces as possible. It is specific to
inverse scattering problem for multilayer scatterer.

If two adjacent layers have close refraction coefficients in the sense that the objec
functional @ is not changed much when the two layers are assigned the same refrac
coefficient, then these two layers can be replaced with just one occupying their place.
minimization problem becomes constrained to a lower-dimensional subsp&¥ @ind
the local minimization is done in this subspace. A similar procedure was used by us in |
for the search of small subsurface objects.

Reduction Procedure

Let ¢ be a positive number.

1. Savethe starting configurati@p = (r1,r2,...,rw, N1, No, ..., Ny) and®(Qyp). Let
the (M + 1)st layer beDy 1 = {rm <|X| < R} andny 41 = k3.

2. Fori =2,..., M + 1 replacen;_; in the layerD;_; by n;. Computed at the new
configurationQ¢, and the difference’ = |®(Qq) — ®(QY)|.

3. Fori =1,..., M replacen;; in the layerD;j,; by n;. Computed at the new con-
figurationQ}, and the difference = |®(Qg) — ®(Q).

4. Find the smallest among the numbq?:andci”. If this number is less thasn ®(Qg),
adjust the refraction coefficient tg in the “down” or “up” layer accordingly. Replace the
two adjacent layers with one occupying their place, and renumber the layers.

5. Repeat the above steps until no further reduction in the number of layers
occurring.

Note that an application of the reduction procedure may or may not result in the act
reduction of layers.
Finally, the entire local minimization method (LMM) consists of the following:

Local Minimization Method (LMM)

1. Letthe starting configuration B@y = (ry,ro,...,rm, N1, N2, ..., Ny).
2. Apply the reduction procedure €@y, and obtain a reduced configurati@g contain-
ing M" layers.

3. Apply the basic minimization method #,qmN R?M" with the starting poinf;, and
obtain a configuration®;.
4. Apply the reduction procedure tQ;, and obtain a final reduced configuration

Q1.
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5. GLOBAL MINIMIZATION METHODS

Given an initial configuratiorQg a local minimization method finds a local minimum
near Qg. On the other hand, global minimization methods explore the entire admissit
set to find a global minimum of the objective function. While the local minimization i
usually deterministic, the majority of the global methods are probabilistic in their natur
There are great interest and activity in the development of efficient global minimizati
methods; see. e.g. [4, 6]. Among them are the simulated annealing method ([20, 2
various genetic algorithms [16], interval method, and the TRUST method ([2, 3]). As v
have already mentioned, the best fit to data functidnhbs many narrow local minima. In
this situation it is exceedingly unlikely to get the minima points by chance alone. Thus, c
special interest is in the minimization methods, which combine a global search with a lo
minimization. In [15] we developed such a method (the hybrid stochastic-determinis
method) and applied it to the identification of small subsurface particles, provided a
of surface measurements. The HSD method could be classified as a variation of a gel
algorithm with a local search with reduction. In this paper we consider the performance
two algorithms: Deep’s method and Kan and Timmer’s multilevel single-linkage methc
Both combine a global and a local search to determine a global minimum. Recently, th
methods have been applied to a similar problem of the identification of particles frc
their light scattering characteristics in [29]. Unlike [29], our experience shows that Deg|
method has failed consistently for the type of problems we are considering. See [10,
for more details on Deep’s method.

Multilevel Single-Linkage Method (MSLM)

Kan and Timmer [25, 26] give a detailed description of this algorithm. Zakevial.
in [29] describe in detail an experience of its application to an inverse light scatteri
problem. They also discuss different stopping criteria for the MSLM. Thus, we give he
only a shortened and an informal description of this method and of its algorithm.

In a purerandom searchmethod a batctH of L trial points is generated if\agm
using a uniformly distributed random variable. Then a local search is started from e
of theseL points. A local minimum with the smallest value d&f is declared to be the
global one.

A refinement of the random search is tleeluced sample random seanstethod. Here
we use only a certain fixed fractign< 1 of the original batch of. points to proceed with
the local searches. This reduced santglg of y L points is chosen to contain the points
with the smallesy’ L values of® among the original batch. The local searches are starte
from the points in this reduced sample.

Since the local searches dominate the computational costs, we would like to initiate tt
only when itis truly necessary. Given a critical distadoge define a cluster to be a group
of points located within the distanceof each other. Intuitively, a local search started from
the points within a cluster should result in the same local minimum, and, therefore, sho
be initiated only once in each cluster.

Having tried all the points in the reduced sample we have information on the numbel
local searches performed and the number of local minima found. This information and
critical distanced can be used to determine a statistical level of confidence that all the loc
minima have been found. The algorithm is terminated (a stopping criterion is satisfied
an a priori level of confidence is reached.
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If, however, the stopping criterion is not satisfied, we perform another iteration of t
MSLM by generating another batchbtrial points. Thenitis combined with the previously
generated batches to obtain an enlarged bttbf jL points (at iteratiorj ), which leads
to a reduced sampllel,‘ed of yjL points. The critical distance is reduced tal; (thus, the
cluster’s size is redefined), a local minimization is attempted once within each cluster,
information on the number of local minimizations performed and the local minima four
is used to determine if the algorithm should be terminated, etc.

The following is an adaptation of the MSLM method to the inverse scattering proble
presented in Sections 2 and 3, with all the relevant notations. The LMM local minimizati
method introduced in the previous section is used here to perform local searches.

MSLM (at Iteration j)

1. Generate another batch bftrial points (configurations) from a random uniform
distribution inA,qm. Combine it with the previously generated batches to obtain an enlarg
batchH! of jL points. _

2. ReduceH! to the reduced sample.,,of yjL points, by selecting the points with the
smallesty jL values ofd in HI.

3. Calculate the critical distanck by

M InjL\ Y™
dg=n1/2<r<1+>RM” J) ,

2 i
M olnjL\"M
dff = 7 ~1* (F (1+ 2) (Mhigh — Niow)™ jLJ ) :

d = /(d)+ @)’

4. Order the sample points ii=|r'ed so that®(Q;) < ©(Qj41),i =1,2,...,yjL. For
each value of, start the local minimization fron®;, unless there exists an indéx< i,
such thaf| Qx — Qi || < d;. Ascertain if the result is a known local minimum.

5. LetK be the number of local minimizations performed, and/lebe the number of
different local minima found. Let

W W(K —1)
tot K_W_2
The algorithm is terminated it
Wit < W + 0.5. (5.1)

Herel is the gamma function, andis a fixed constant.

A related algorithm (the mode analysis) is based on a subdivision of the admisible
into smaller volumes associated with local minima. This algorithm is also discussed
[25, 26]. From the numerical studies presented there, the authors deduce their prefer
for the MSLM.
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6. NUMERICAL RESULTS

Introducing polar coordinates in (2.3) and separating the variables, equations for the t
field u(x) become

u) = Y anrd(kalx)e'"’

l=—00

for x € Dy,

oo

Un() = @m1 I KenlX]) + by Yi (ken|x])) €

|=—00

forx e D), 1 =2,...,N,and

U(X) — eik(X,U) + Z A|H|(1)(k0|x|)e“9

l=—00

forx e D:ry < |X| < R. HereJ, Y, are the Bessel functions of the first and second kind
H|(1) is the Hankel function of the first kind, andis the direction vector of the incident
wave. Since

ko 4 37 i1 3 olx el

|=—00

for v = (1, 0), the above equations and the conditions of continuity form a system
equations from which the field(x) can be calculated on the circB This solves the direct
problem (2.2)—(2.3). Other methods of solution for such problems are known as well; s
e.g., [18, 28]. Solving the direct problem for the &ebf three free wave numbek‘;m (see
(3.8)), we obtain the total fields'™ (x). Their restrictions tcS give the (simulated) data
g(p) ).

Our approach to the inverse problem IPM (see Section 2) is to recast it in the best fi
data form (3.5) and to minimize the objective functioadver Ayqm. We have tested Deep’s
global minimization method, the multilevel single-linkage method, and a reduced sam
random search method. Each method was tried for three different original configurati
Qo described below. The dag” (9) was computed at 120 anglés= 21,120, | =
1, 2,..., 120, and® was evaluated according to (3.4) and (3.5). This data was used wi
three different noise level$ = 0.00, 0.03, and 0.10. More precisely, for the uniformly
distributed on [0, 1] random variabie

9:(0) = 9(0) +dllgll(2z— (L +1)

for the noise leves.

Since our goal was to test the applicable algorithms, the values for the refraction coe
cients, the size, the wavenumbers, etc., were chosen arbitrarily at this time, that is, witt
a regard for their possible physical relevancy. The original configurations are:
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Configuration Ql). This is a one-layer cylindd@f)l) =(0.72, 4.2025) wittlN = 1 and
R = 1.0; see (3.2). That is, the refraction coefficient is defined by

noo — {42025 0= [x| <072
~ 110 072 < |x| < 1.0.

Configuration §. This is a two-layer cylinde®}” = (0.4, 0.6, 0.49, 9.0) witiN = 2
andR = 1.0; that is,

449 0<|x| <04
Nx)=<¢90 04<|x| <06
10 06<|x| <10

Configuration . This is a three-layer cylinde®” = (0.3, 0.7, 0.8, 4.0, 25.0, 9.0)
with N = 3 andR = 1.0; that is,

40 0<|x| <03
hx = 4250 03<Ix| <07
Y90 07<|x/ <08

1.0 08<|x| <10.

To identify these configurations we applied the global minimization methods
Section 5. In each one we I& =4, R=1.0. A priori bounds for the refraction co-
efficients were chosen to b, = 0.04 andnpgh = 30.25. Minor modifications to the
description of the methods in Section 5 were introduced for the purpose of computatic
simplification. In particular, the minimization was done,jfmn, rather than im,, as stated
there. This results in a rescaling of the admissible set. In each case, after a global minir
Qmin Was determined, the error of the identification

~ JoINmin(x) — n(x)|
€err =
Jon®)

: (6.1)

wheren(x) is the refraction coefficient of the original configuratiQa, was computed to
determine if the identification was successful. We distinguished between the two level
a successful identificatiomgr < 0.01 andeer < 0.1.

Identification by Deep’s Method [10, 29]

Each test of the method consisted of 100 independent runs. Bireel the minimization
was done ink®. As we have already mentioned, the method failed every time. It seer
that the local minimization phase of Deep’s method (minimization over randomly select
parabolas) is not extensive enough to identify narrow local minima present in this proble
Also, the method does not use the reduction procedure (see Section 4), which, we thin
another reason for its failure. As in [29] we have also observed the cycling of the algoritt

Identification by Reduced Sample Random Search Method

This method is presented in Section 5 in the subsection on the multilevel single-linke
method. The local minimization method with the reduction procedure (as described
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TABLE |
Identification by MSLM

Success rate

Noise Runs 0.01 0.1 Smalle$t

8 =0.00 10 8 10 0.0000
8 =0.03 10 9 10 0.0016
§=0.10 10 10 10 0.0178

Note.Original ConfiguratiorQ{".
2 |dentification is successful &, < 0.01, ore.; < 0.1 correspondingly; see (6.1).

Section 4) was used in the local minimization phase. Chosen pararheters5000 and

y = 0.01 the performance of this method are the same, as those in the multilevel sing
linkage method. In fact, = 15000 is exactly the sample size in MSLM at it termination
in our experiments. Since MSLM has the great advantage of a self-contained statist
stopping criteria (and from which the number 15,000 was determined in the first place’
is clearly a preferred method.

Identification by Multilevel Single-Linkage Method

We have attempted to identify all 3 original configuratioQ{,,l), E,Z), and Q63>, each

with no noise in the daté& (= 0.00) as well as with noise leveds= 0.03 and = 0.10. See
Tables I-lll. Each of the 9 tests consisted of 10 independent runs. It took about 60 to 80
on average to complete one run on a 333-MHz PC. We ied 4, R= 1.0, y = 0.01,
and the sample side = 200. The parameterwas chosen to be equal to 1.0. Vatue- 4.0
was used in [26], anad = 1.9 in [12]. As in Deep’s method above, a priori bounds for the
refraction coefficients were chosen tofig, = .04 andnpigh = 30.25. The value;, = 0.1
was used in the reduction procedure (see Section 4) during the local minimization pha

As in other work on the clustering algorithm, we have found the stopping rule (5.1) to
unsatisfactory. In our experience the differeMig; — W, while slightly decreasing with
the number of performed minimizations, has quickly stabilized around the value of 5. Th
the stopping criterion (5.1)

Wt < W+ 0.5

TABLE Il
Identification by MSLM

Success rafe

Noise Runs 0.01 0.1 Smallest

8 =0.00 10 10 10 0.0000
8§ =0.03 10 1 10 0.0034
§ =0.10 10 2 9 0.0362

Note.Original ConfiguratiorQ®.

2See Table I.



MULTILAYERED PARTICLES FROM SCATTERING DATA 543

TABLE 11l
Identification by MSLM

Success rate

Noise Runs 0.01 0.2 Smalledt

8 =0.00 10 2 7 0.0000
8 =0.03 10 0 5 0.0071
§=0.10 10 0 5 0.0541

Note.Original ConfiguratiorQS>.
@ See Table I.

could not be attained. This issue has been discussed in Refs. [5, 12], where a diffe
stopping rule was suggested for functions with large numbers of local minima. Since
Bayesian stopping rule reflects the level of confidence in finding all the local minima
relaxation of (5.1) would mean a lower level of confidence, which still may be acceptal
to ensure that the global minimum is found among already performed local minimizatio
We have chosen to replace (5.1) with

VVIOt < W+ 05 or V\/tot < (1+ EIOI)W» (62)
whereeg: = 0.03.
As before
W(K —1)
\Ntot = El
K-W-2

whereK is the number of local minimizations performed, alids the number of different
local minima found. Thus, the MSLM algorithm is terminated if (6.2) is satisfied. In oL
numerical experiments we have obtained the average vaues5000, W = 150, and
Wiot = 155.

An example of successfiéer < 0.1) identification forQéz) ands§ = 0.10 is shown in
Fig. 6. The identified configuration is a two-layer cylinder

Qiad = (0.3966 0.5943 0.4684 9.203),
with ®(Qig) = 0.0367,€cr = 0.0480. That is,

0.4684 0< |x| < 0.3966
n(x) = { 9.203 03966< |x| < 0.5943
1.0 05943 < |x| < 1.0.

An example of a successfider < 0.1) identification forQ}f) andé = 0.03 is a three-
layer cylinder,

Qia = (0.3030 0.7067,0.8079 4.071, 24.528 8.857),
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FIG. 6. Refraction coefficientsi(x) for the original Q{f’ and the identifiedQ;y (solid line) configurations.

Data noise leved = 0.10, ®(Qq) = 0.0367, .,, = 0.0480.

with ®(Qjq) = 0.00708 ey = 0.4125. That is,

4.071 0< |x| < 0.3030
24528 Q3030< |x| < 0.7067
8.857 Q7067< |x| < 0.8079
10 0.8079< |x| < 1.0.

n(x) =

7. CONCLUSIONS

The inverse scattering problem IPM is the identification of a multilayered scatterer by a
of observations onits boundary. Such problems have applications in science and enginee
In the case of the week scattering approximation, many such problems can be solve
a linearized inversion. However, if the scattering is not weak, other methods of soluti
need to be developed. We have illustrated in Section 3 that an inversion based on just
frequency of the incident waves cannot be successful, since there are distinct configurat
producing practically the same observations. Introducing multiple frequencies, howey
makes the inverse problem more amenable to a solution.

In this paper the inverse problem is transformed into the best fit to data minimizati
problem. This minimization is difficult, since the objective function is rugged and has ma
narrow local minima. A promising way to treat such a minimization is by a combinatic
of global (probabilistic) and local (deterministic) minimization methods. In this paper w
examined various local and global methods. Concerning the local minimization method
was shown that the local minimization method (LMM) of Section 4 was successful, ev
when other considered methods failed. This method is a variation of a conjugate directi
method with no use of partial derivatives. It has a quadratic convergence near quadratic
shaped minima. However, even this method needs to be enhanced by a reduction proce
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(Section 4). This procedure helps the minimization to take an advantage of the a priori a\
able information that the sought minima are likely to be found in certain lower-dimensior
subspaces of the entire minimization space.

For the global minimization part we considered Deep’s method and the multilevel sing
linkage method. While Deep’s method failed, the MSLM was successful in many instanc
It also has an important advantage of having termination criteria establishing a leve
confidence that the found minima contain the sought global minimum. Among the de
ciencies of the MSLM are its slow execution and inconsistency and failure to identify sol
configurations. There is still a problem in choosing an appropriate stopping rule. Thus,
MSLM provides a benchmark against which the performance other methods can be juc
and measured.
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